Increased Exposure of Anionic Phospholipids on the Surface
نویسندگان
چکیده
Anionic phospholipids are largely absent from the external leaflet of the plasma membrane of mammalian cells under normal conditions. Exposure of phosphatidylserine on the cell surface occurs during apoptosis, necrosis, cell injury, cell activation, and malignant transformation. In the present study, we determined whether anionic phospholipids become exposed on tumor vasculature. A monoclonal antibody, 9D2, which specifically recognizes anionic phospholipids, was injected into mice bearing a variety of orthotopic or ectopic tumors. Other mice received annexin V, a natural ligand that binds to anionic phospholipids. Both 9D2 and annexin V specifically localized to vascular endothelium in all of the tumors, and also to tumor cells in and around regions of necrosis. Between 15 and 40% of endothelial cells in tumor vessels were stained. No localization was detected on normal endothelium. Various factors and tumorassociated conditions known to be present in the tumor microenvironment were examined for their ability to cause exposure of anionic phospholipids in cultured endothelial cells, as judged by 9D2 and annexin V binding. Hypoxia/reoxygenation, acidity, thrombin, and inflammatory cytokines all induced exposure of anionic phospholipids. Hydrogen peroxide was also a strong inducer. Combined treatment with inflammatory cytokines and hypoxia/reoxygenation had greater than additive effects. Possibly, injury and activation of tumor endothelium by cytokines and reactive oxygen species induce exposure of anionic phospholipids, most likely phosphatidylserine. Anionic phospholipids on tumor vessels could potentially provide markers for tumor vessel targeting and imaging.
منابع مشابه
Increased exposure of anionic phospholipids on the surface of tumor blood vessels.
Anionic phospholipids are largely absent from the external leaflet of the plasma membrane of mammalian cells under normal conditions. Exposure of phosphatidylserine on the cell surface occurs during apoptosis, necrosis, cell injury, cell activation, and malignant transformation. In the present study, we determined whether anionic phospholipids become exposed on tumor vasculature. A monoclonal a...
متن کاملBiophysical Studies of a Synthetic Mimic of the Apoptosis-Detecting Protein Annexin V
A Zn-dipicolylamine coordination compound is shown to sense the presence of anionic phospholipids in a membrane bilayer. The sensor contains two dipicolylamine subunits attached to an anthracene scaffold, which exhibits a maximum absorbance at 380 nm, and undergoes an enhancement in fluorescence intensity when exposed to membranes enriched in phosphatidylserine. For these reasons, the compound ...
متن کاملA monoclonal antibody that binds anionic phospholipids on tumor blood vessels enhances the antitumor effect of docetaxel on human breast tumors in mice.
Anionic phospholipids, principally phosphatidylserine, become exposed on the external surface of viable vascular endothelial cells in tumors, providing an excellent marker for tumor vascular targeting. We recently raised an IgG monoclonal antibody, 3G4, which binds to anionic phospholipids in a beta2-glycoprotein I-dependent manner. It inhibited tumor growth in a variety of rodent tumor models ...
متن کاملLigand-regulated secretion of recombinant annexin V from cultured thyroid epithelial cells.
The exposure of anionic phospholipids on the external surface of injured endothelial cells and activated platelets is a primary biological signal to initiate blood coagulation. Disease conditions that promote the formation of ectopic thrombi result in tissue ischemia. Annexins, Ca2+-dependent anionic phospholipid binding proteins, are potential therapeutic agents for the inhibition of coagulati...
متن کاملAntitumor effects of a monoclonal antibody that binds anionic phospholipids on the surface of tumor blood vessels in mice.
PURPOSE We recently reported that anionic phospholipids, principally phosphatidylserine, become exposed on the external surface of viable vascular endothelial cells in tumors, possibly in response to oxidative stresses present in the tumor microenvironment. In the present study, we tested the hypothesis that a monoclonal antibody directed against anionic phospholipids might exert antitumor effe...
متن کامل